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1    Statement of Problem: Automation of Helicopter 
Formations 

Formation flight is the primary movement technique for teams of helicopters. 
However, the potential for accidents is greatly increased when helicopter 
teams are required to fly in tight formations and under harsh conditions. 
ARO STIR W911NF-04^ 1-0448 proposed that the automation of helicopter 
formations is a realistic solution capable of alleviating risks. Helicopter 
formation flight operations in battlefield situations are highly dynamic and 
dangerous, and, therefore, we maintain that both a high-level formation 
management system and a distributed coordinated control algorithm should 
be implemented to help ensure safe flight formations. 

Our ultimate research objective is to develop technologies that work 
both manned and unmanned rotorcraft, since it is our sense that they will 
be working together in the future. We also deeply believe that it is important 
to develop tools for human centered automation as a via-point to complete 
automation. As a preliminary work toward autonomous (for unmanned 
rotorcraft) and semi-autonomous (for manned helicopters) formation flight 
control and management system, we designed decentralized nonlinear model 
predictive control (MPC) law for coupled systems. Also, a hardware-in-the- 
loop simulation (HILS) system was implemented as the future development 
tool. 

The starting point for ARO STIR W911NF-04-1-0448 was to design a 
distributed control law attenuating external disturbances coming into a for- 
mation, so that each vehicle can safely maintain sufficient space between it 
and all other vehicles. While conventional methods are limited to homoge- 
neous formations, our decentralized MPC approach allows for heterogeneity 
in a formation. In order to avoid the conservative nature inherent in dis- 
tributed MPC algorithms, we begin by designing a stable MPC for individual 
vehicles, and then introducing carefully designed inter-agent coupling terms 
in a performance index. Thus the proposed algorithm works in a decentral- 
ized manner, and can be applied to the problem of safe helicopter formations 
comprised of heterogenous vehicles. 

In order to perform formation flight experiments based on the proposed 
algorithm while minimizing the possibility of software failure, we developed 
a hardware-in-the-loop simulation (HILS) system which is compatible with 
our rotorcraft-based unmanned aerial vehicle (RUAV) systems. Using mul- 
tiple HILS system enables us to verify newly developed code in realistic 
circumstances.   Also, the developed HILS system will be used as a virtual 



helicopter in the future experiments. 
Section 2 describes linear helicopter dynamics and nonlinear kinemat- 

ics, and a cruise model of the Yamaha R-50 industrial unmanned helicopter 
[23], which is used throughout this report. We introduce a scaled-up model 
by taking advantage of dimensional analysis for the heterogeneous forma- 
tion used in Section 3. In Section 3, the MPC algorithm for autonomous 
helicopter formations is formulated. Decoupled MPC algorithms for individ- 
ual vehicles are designed based on the Control Lyapunov Function (CLF) 
approach [17]. The formation topology is defined, and the varying gap 
strategy and the constant gap strategy are introduced. Through computer 
simulations, we show that the proposed MPC scheme successfully attenu- 
ates external disturbance propagation even in a heterogeneous formation. 
Section 4 describes the hardware and software structure of the HILS system 
for Berkeley Aerobot (BEAR) fleet. A summation of work completed on 
ARO STIR W911NF-04-1-0448 is given in Section 5 followed by conclusions 
and suggestions for future work. 

2    Helicopter Dynamics 

Helicopter dynamics with a nonlinear kinematics model in a general form is 
presented. Based on this, the combined dynamics and kinematics model for 
the forward cruise flight mode is derived in the section 2.2. 

We need a set of heterogeneous helicopter cruise models for simulations, 
since our algorithm proposed in the next section is focused on the distur- 
bance attenuation property in a heterogeneous formation. Because a cruise 
model of a helicopter with proper size is extremely rare in the literature, we 
simply use a dimensional analysis technique presented in [23] to generate a 
scaled-up virtual model. Details of how the model is scaled up are discussed 
in Section 2.3. 

2.1    Helicopter Dynamics with Nonlinear Kinematics 

Since the helicopter dynamics, which can be derived using Newton's law, are 
represented in the body coordinates system fixed to the center of the mass 
of a helicopter [32], the kinematic equations between the body coordinates 
and the spatial coordinates1 are required. The kinematics are further divided 
into two parts: (1) the position describing translational motion in the spatial 

1 Throughout this report, the spatial coordinates mean the tangent-plane coordinate 
system, whose origin is located at a certain point of the earth's surface. 



Rear   View 

Figure 1: Free body diagram of a helicopter [32] 

coordinates, and (2) the Euler angles describing the vehicle's attitude and 
heading in the spatial coordinates. 

The following definitions of helicopter dynamics and kinematics are based 
on [32, 34] with slight modifications. Figure 1 shows the body-fixed coordi- 
nates, forces and moments exerted on the helicopter. The positive directions 
of 2, y, and z axes of the spatial coordinates align, respectively, to the north, 
east and downward directions. For detailed derivations of the helicopter dy- 
namics, see [32] and [23]. 

As mentioned earlier, the overall system dynamics are divided into the 
kinematics and the system-specific dynamics denoted by superscripts K and 
D. The state vectors and the control input vector are defined as follows: 

xD = [u   v   p   q   a\s   bis    w   r   r^   c   d] 

xA = 

U =  [Uals     Uau     UQM     Uref]     , 

(1) 

(2) 

(3) 



where 

u, v, w: trimmed translational velocities in body coordinates 

p, q, r: roll, pitch and yaw rates in the body coordinates 

<f>, 6, ip: denote roll, pitch, and yaw in ZYX Euler angle notation2 in the 
spatial coordinates 

aist kis: longitudinal and lateral flapping angles of the main rotor 

c, d: longitudinal and lateral flapping angles of the Bell-Hiller stabilizer 
bar 

rff,: internal state of feedback gyro 

v-ais, ua\s: inputs to the lateral and longitudinal cyclic pitch 

u$M: input to the main rotor collective pitch 

uref. reference yaw rate input to the gyro 

Let the superscripts S and B denote spatial and body coordinates. Xs and 
xB denote the position in the spatial coordinates and in the body coordi- 
nates, respectively3. 

The kinematics part can be defined as follows: 

ks = RB^sxB,    x^ = i^V (4) 

where Xs — [xs ys zs]T, and UJ = \p q r]T. RB^s(x.A), the rotation matrix 
from the body to the spatial coordinates, and RB^s(xA) is the relationship 
matrix between angular rates in the body and in the spatial coordinates. 
They are defined by [6, 20] 

Rk 

RS B^S 

cos ip cos 9   cos ip sin 9 sin <j> — sin ip cos <p    cos ip sin 9 cos <p + sin ip sin <p 
sin ip cos 9    sin ip sin Ö sin <^> 4- cos ip cos (p   sin ip sin 9 cos <p — cos ip sin <p 

— sin 9 cos 9 sin <f> cos 9 cos <p 

(5) 

1    sin<^tan0    cos<^tan# 
0        cos <p — sin <p (6) 
0    sin cp sec 9    cos <p sec 

2Rotate ip in Z, 6 in Y' and (p in X". Note that this transformation results in same 
transformation with XYZ fixed angles [6] 

Subscript vehicle indexes are suppressed until the next section for simplicity 



The dynamics part can be written as 

kD = fD(xD(t),KA(t)Mt)). 

Finally, the entire system equation becomes 

(7) 

L 
dt 

e 

or simply, 

fD{xP{t),xA{t),M{t)) 

ftB^S^B 
f(xs(t),xD(t),xA(t),u(t)),    (8) 

x(t) = /(x(t),u(i))  with x: 

,D-\ 

(9) 

2.2    Helicopter Cruise Model 

In [23], a linear cruise flight model of the Yamaha R-50 industrial helicopter 
trimmed at MO — 49 ft/sec, WQ = 11.2 ft/sec, and VQ = 0 is introduced and all 
the coefficients in the dynamics equation are identified through test flights 
and system identification techniques. If we convert this trim condition into 
spatial coordinates, then it becomes 30 mi/h forward cruise speed with the 
pitch trim 0O = -0.22(rad). 

In order to use the linear cruise model, we need to define several relation- 
ships between spatial variables and variables in the linear dynamics. First, 
the velocities in the body-fixed frame can be represented by 

x   — uo + u, yB — vo + v, and i Wo +w. (10) 

Next, the trimmed pitch angle 0 can be defined as 

9 = 9-60. (11) 

From these relationships, the kinematics equations (4) are now well defined. 
The dynamics can be represented by 

xD(t) = fD(xD(t),xA(t),u(t)) = Axl(t)+Bu(t), (12) 

where A G R11*13, B 6 Rllx4, and 

c   d   4>   9]' (13) •x = [u   v   p   q   ais    bis    w   r   rfb 

The helicopter hovering mode is known to be an unstable equilibrium, 
which means that any small perturbation will cause the vehicle to diverge 
from the hovering condition. On the contrary, the helicopter dynamics in 
the forward flight condition are stable with respect to a given pitch angle, 
and converge to a fixed point in the state space. 



Table 1: Comparison of Froude numbers 
Rotor Radius Rotor Speed N Froude 

(ft) (rad/s) Number 
R22 13 53 0.38 1134 

Virtual Model 10 62 0.5 1194 
R-50 5 89 1 1230 

2.3    Scaling Based on Froude Number 

In order to test the algorithm we propose in the next section with a hetero- 
geneous helicopter team, we needed to generate a model that has different 
dynamics characteristics from our existing Yamaha R-50 model. Since it is 
extremely difficult to perform an identification flight in a cruise condition 
without a wind tunnel facility, we used the scaling technique presented by 
Mettler [23]. 

The Froude number is the ratio of inertia to gravitational forces. If two 
different models have Froude numbers that are close each other, it means 
that two systems have similar dynamic properties. The number is defined 
by 

V2 

F = J-, (i4) 

where V is the characteristic velocity, L is the characteristic length, and g is 
gravitational acceleration. In helicopter dynamics, the rotor tip velocity and 
the rotor radius are used as V and L respectively. The Table 1 shows the 
comparison of the Froude numbers of Yamaha R-50 and Robinson R22, and 
they are very close. We have created a virtual model in the region between 
the Robinson R22 and Yamaha R-50, which has two twice the rotor diameter 
of the R-50 and has a similar Froude number. The scale N refers to a model 
helicopter with 1/N the rotor diameter of the Yamaha R-50. It should be 
noted that the relationship of the Froude number imposes a relation between 
time scales [23], 

sec « —p=. (15) 
N 

Based on these comparisons, the scaling of coefficients in A and B (12) can 
be done using dimensional analysis. 

Figure 2 and 3 shows frequency responses of the R-50 cruise model and 
the scaled-up virtual model. As expected, the attitude dynamics of the 
virtual model are much slower than those of the R50.   This fact can be 
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Figure 2: Frequency response from lateral cyclic pitch u\ to l>ody roll rate 
p (solid: virtual model, dashed: R-50 model) 

reconfirmed by step responses of attitude and body-velocity dynamics (Fig- 
ure 4). 

3    Summary of Results:    MPC-Based Helicopter 
Formation Flight 

Model predictive control (MPC), also known as moving horizon or reced- 
ing horizon control (RHC), has been a useful technique for the control of 
slow dynamical systems such as chemical processes because such a scheme 
requires high computational speed of the control hardware due to its on- 
line nature. With the rapid development of digital processors, powerful and 
inexpensive controllers make it possible to adopt MPC in hard real-time 
applications [31]. 

MPC can provide a better performance in controlling uncertain plants 
since it can update the gain of the controller based on the current states, 
while fixed-gain control algorithms cannot [21]. The capability to manipu- 
late the state-dependency of the control weighting matrices and constraints 
in real-time is the key feature of a model predictive control algorithm. There 
are excellent survey papers describing the development of MPC theories. See 
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Figure 3: Frequency response from longitudinal cyclic pitch MO to body pitch 
rate q (solid: virtual model, dashed: R-50 model) 

[22] and [3] for example. 
As long as an MPC algorithm is applied to a formation flight problem, a 

centralized approach is not a feasible choice at all, since it is not scalable from 
the viewpoint of computation and communication [7 .'' Thus it is natural to 
consider a decentralized approach to the formation flight problem. However, 
with a decentralized MPC scheme, it is recognized that the stability proof 
becomes very difficult. 

Under the assumption that the dynamics of each vehicle are decoupled, a 
major obstacle in proving the stability of a decentralized MPC scheme arises 
in predicting neighbors' behaviors over the future horizon. Without consid- 
ering inter-vehicle constraints, the coupling between agents appears in the 
performance index as a penalty on relative gap errors. If there is no appro- 
priate predictions of the behaviors of neighbors, it is difficult to set bounds 
on them. In an attempt to resolve this difficulty, authors of [7] introduced 
so called 'compatibility constraints', which restrict the future variations of 
neighbors' optimal inputs from the previous optimal ones. Using this, it can 

4ln terms of communication, the amount of communication in a decentralized setup can 
be more than that of a centralized version depending on the type of numerical procedures 
for achieving an optimal solution. This subject is discussed in Section 3-1 more detail. 

10 



(a) roll rates in body coordinates,      (b) lateral velocities in body coordi- 
lateral cyclic step input nates, lateral cyclic step input 

(c) pitch rates in body coordinates,      (d) longitudinal velocities in body 
longitudinal cyclic step input coordinates, longitudinal cyclic step 

input 

Figure 4:  Step response comparisons between the R-50 (dashed) and the 
virtual model (solid) 

11 



be proved that the closed-loop states converge to the neighborhood of ori- 
gin. However, due to the nature of this constraint, once an open-loop control 
is computed and applied to the system on the current sampling time, the 
control at the next sampling time is constrained by the previous open-loop 
control. In nominal situations (no model errors without exogenous distur- 
bances), this may not be a problem, since the open-loop control will predict 
the system behaviors exactly and the system may stay on the optimal tra- 
jectory. However, if the system trajectory starts to deviate from the initial 
optimal trajectory because of disturbances or model errors, this constraint 
would limit the effect of feedback, and the robust nature of the feedback 
system might be lost. Before the stability is affected by uncertainties, the 
algorithm may have trouble maintaining the feasibility of the optimization 
problem. Furthermore, since this algorithm is applicable only to (nonlinear) 
double integrator systems, it is impossible to use this algorithm for forma- 
tion flight of helicopters, which have unmeasurable hidden state variables 
related to napping and stabilizer bar dynamics. 

In [19], researchers used the hierarchical decomposition method, which 
decomposes the original formation graph into overlapping subgraphs with 
different hierarchy levels. Under this decomposition, the algorithm allows 
a vehicle at a node with high priority to compute control laws for vehicles 
with lower priorities, and transmit them to vehicles with lower priorities, 
assuming a one time step communication delay. By doing this, since fu- 
ture behaviors of neighboring vehicles with lower priorities are completely 
known to vehicles with higher priorities, 'prediction' is no longer needed, and 
stability can be proved by standard Lyapunov arguments. In theory, this 
method provides a simple and clear way to prove the stability of a decentral- 
ized MPC scheme ,minimizes the conservatism and required communication 
bandwidth. However, in this case, the integrity of the system structure is 
totally dependent on the communication link, which can be deteriorated 
easily in battlefields. 

Instead of sticking to proving stability of a decentralized MPC, our focus 
is on designing an MPC-based velocity tracking controller with penalties 
on relative gap errors, and study the propagation of external disturbances 
through the formation. In the following sections, we suggest two strategies 
of defining relative gap errors between neighboring vehicles, and compare 
their disturbance attenuation performance in three dimensional helicopter 
formation simulations. 

12 



3.1    Formation Topology and Definitions of Gap Errors 

In the following discussion, we examine formations where each agent in the 
formation has connections that are less than or equal to two. Although cases 
where one or more agents in the formation has more than three connections 
can still be accounted for, these are considered special cases, and are not 
described here. In real-world operations, most helicopter formations fall into 
the category with a maximum two bidirectional connections on each agent 
[15]. Some publications [8, 19] on the vehicle formations using distributed 
MPC algorithms consider arbitrary formation shapes represented by con- 
nected graphs. However, an arbitrary formation shape is obviously not used 
in high-speed cruise formations, especially for manned helicopters. We be- 
lieve that the research on arbitrarily coupled vehicle formation needs to be 
developed in the context of behaviors of a 'swarm' of unmanned vehicles |'l]. 

Most vehicle formation algorithms [8,19, 26, 29] use a so-called 'constant 
gap' strategy as described in Figure 5. i[_li 6 K3 denotes the constant 
relative gap vector from i — 1-th vehicle to i-th vehicle in the reference coor- 
dinates, which is represented by xr — yr (tangential-normal to the reference 
velocity Vf) in the figure. Note that we need the relationship 

for the unique definition of the formation shape. Also, we can obtain the 
lf_n using the rotation matrix Rr^s(il;r) such that 

l!-U = RT^S^r)lU,- (17) 

As shown in Figure 5, the gap error can be defined as 

ei,i-l = xi-l ~xi   + k-l,i ,. 0>. 

— -"-i-l       -'S        H,i-1 

The other type of the gap strategy is called a 'varying gap' strategy (Fig- 
ure 6). In this strategy, the i-th vehicle considers the middle point in the 
line connecting i — 1-th vehicle to i + 1-th vehicle as the reference point. The 
error vector becomes 

ef^^-xf. (19) 

For vehicles in edges, the constant gap strategy (18) is used, although other 
vehicles use the varying gap strategy. By using the constant strategy in 
edges, the sum of squares of gap errors is zero if and only if all the gap 
errors are zero, even if we use the varying gap strategy. 

13 



Figure 5: Error vector definition, constant reference gap 

Figure 6: Error vector definition, varying reference gap 
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Figure 7: Configuration of the 3D Vee formation 

The definition of the error vector also varies according to the role of a 
vehicle in the formation, e.g., leader vehicle. Suppose that a vehicle with 
index I is leading a three-dimensional Vee formation (Figure 7). Then, the 
objective of the leader is to maintain constant gaps in xT and zs direction 
from the nearest neighbors, while it uses the varying gap strategy in yr 

direction. Let us define indices of the nearest neighbors of and a* such that 

-l   if NJ-xJ_i|<|sJ-a:J+l| 
+1    otherwise 

-1      if   |2f-2f_,|<|*f-*?+ll 
(20) 

+1    otherwise 

The gap error vector for the leader is finally defined as 

e  = JKtf-i+tf+i) 
•.of I 

(21) 

where l\{z,v,z) denotes the corresponding element of a vector /. The gap 
error vector for the leader is illustrated in Figure 8. Note that, although the 
constant gap strategy is used in xr and zr directions, the overall definition 
of the gap error vector is time-varying, since a'z and QI are not constant 
with respect to time. 

15 



i(y[_i + y[+1) 

Figure 8: Illustration of error definition for a leader vehicle 

By using gap error vector definitions represented above, we can imple- 
ment most of real-world helicopter formations. For example, Vee, wedge, 
left and right echelon, and left and right staggered formations [15] can be 
realized. 

3.2    Model Predictive Control Law for Helicopter Formations 

Recall the system equation of the i-th vehicle 

Xi(t) = f,{x,(t),n,(t)), (22) 

where 
XiEXiCR"', u.eMiCR"" (23) 

Here X and U\ are convex sets. We assume that \ii(t) is measurable, and 
fi : Xi x Ui —• Rn* satisfies standard conditions for admitting a unique 
solution. Remember previously defined this nonlinear helicopter model as 
a combination of six degree-of-freedom nonlinear kinematics and linear for- 
ward cruise dynamics in Section 2. 

16 



The performance index Ji(-) has the form of 

/T+L 

A(xi(*),x£i(t),ui(t))yf(t))dt+^/(xi(r+JL),x£i(r+X),yf(T+L)), 

(24) 
where the terminal penalty function V/ (•) : Xi X X-i x W' —> R is positive 
definite. The subscript —i denotes indices of neighbors of the i-th vehicle, 
yf : R —+ M"i is the reference vector in the spatial frame, which has (at 
least) the reference velocity vector x^ 'r(t) and the reference heading ipl(t). 
The running cost C% : Xi x X-i x lii x R —» R+ has the property that 
£(0,0,0,0) = 0. 

The finite horizon optimal control (FHOC) problem with initial condi- 
tion Xj = XJ(T) and horizon length L is defined as 

Vi(xi,t)—JmnJi(xi,Ki,t), (25) 

which is subject to (22), and (23). 
Ki is a piecewise continuous time-dependent function in open-loop strat- 

egy space such that 

Ki e Ki = {« : [0, L] x Ai -• Ifc} (26) 

ui(t) = «i(i-r,xi). (27) 

If an optimal solution of the FHOC problem exists, let K* (t — r, Xj) denote 
the solution for t € [T, T + L]. Note that V*(x», t) = J(XJ, «;*, t). 

Based on these, the receding horizon control law for i-th vehicle at t = r 
is defined as 

u,(r) = «fi/(xl)-<(0,xi). (28) 

The running cost £<(•) has the form of 

Afc, xfif ut, yf) = £fp(x,, x£i) + ^foyf) + 4?(*i) + *?("*),    (29) 

where — i represents index(es) of neighboring vehicle(s) following the nota- 
tion of [7]. In case of the constant gap strategy, 

c?a*{xiA) = Hi-i\\Qt,i-i + H4+III<?M+I> (3°) 

where \\X\\Q denotes a matrix weighted norm (xTQx). Similarly, using the 
varying gap strategy, the term can be represented as 

£r(xi,x^) = ||ef||Qi. (31) 

17 



In order to predict x£^(-) over the horizon, we use simple extrapolation 
strategy, which is described in Section 3.4. 

£f (•) penalizes the tracking error, and can be defined as 

Aw(*.yf(«)) = llyf(«)-cy(*)llo,, (32) 

where Cf : Xi —» Rn* maps the state vector into corresponding output sig- 
nals. In order to track the reference velocity vector and heading in the spatial 
coordinate system, we use the following definition of CJ'(XJ) in simulation: 

C?(*i) 
RB~>skf 

(33) 

The term £f (•) is for remaining terms in the state vector that do not appear 
in the previous running costs, tf>, 9, p, q and r, for example. It is noticeable 
that internal states, a, 6, r^,, c, and d, are not penalized, since they are 
not measurable, and related dynamics are well damped. Therefore, we can 
define £?(•) such that 

£?(*) = ||Cf*llfl., (34) 

where Cf £ Rn% X7ls and nf denotes the number of terms in the state 
penalized by Cf (•). £"(-) penalizes input magnitudes, 

#(m) *4IIä> (35) 

with positive definite matrix R S Mn» Xn». 
Finally, the terminal penalty V/(-) is defined by 

y/fox^yf) - < 

-i,i-l 

-i,i+l 

yf-c?(xi 

Cf>Q 

if constant gap strategy is used 

if varying gap strategy is used 

Pi 
(36) 

where i* G R(»,+»'+»f)'<(»s+«!+»f) is a positive definite matrix. Note that, 
for a follower that has two neighbors, the dimension of the gap error vector 
n9 = 6 when the constant gap strategy is used, and n9 = 3 when the varying 
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gap strategy is used. This terminal penalty plays several important roles 
in achieving guaranteed stability. In the next section, we discuss a design 
procedure of an MPC without time dependent terms Cgap{-) and Cy{-). 

3.3    Design of Nonlinear MPC without Inter-agent Couplings 

Due to pioneering research efforts in the 1990s, several design methodologies 
for stable MPC algorithms are now available [22]. In most of the stability 
proofs of MPC algorithms, the 'tail' of the value function of an FHOC prob- 
lem plays a very important role, since it is known that, if one can approx- 
imate this term properly, the MPC based on FHOC problem realizes the 
virtues of infinite-horizon problems in stability and robustness. The work of 
Chen and Allgöwer [5] achieves this by taking advantage of the terminal in- 
equality constraint and (virtual) terminal linear controller. Their technique 
for proving stability is one of the well-regarded among various finite-horizon 
based online optimization controllers, including a decentralized MPC algo- 
rithm [7]. However, it is reported that by introducing a terminal inequality 
constraint in the FHOC problem the numerical computation becomes slow 
[18], and sometimes the MPC structure nonrobust [12]. 

On the other hand, Jadbabaie et. al. [17] achieved a stable MPC algo- 
rithm by using the so-called control Lyapunov function (CLF) as a terminal 
cost without any terminal constraints. In this case, even though it is not 
easy to find a proper CLF for a given nonlinear system without conser- 
vatism, the scheme effectively minimizes the number of constraints subject 
to FHOC problem, which is quite important in practical implementation of 
an MPC algorithm. 

In the remaining section, we describe the procedure to define a CLF for 
the nonlinear helicopter cruise model without inter-agent coupling and time 
dependent terms using semi-definite programming, which appears in [18]. 

First, we need to redefine helicopter cruise dynamics (Eq.(12)) without 
the spatial position vector part as follows 

d_ 
dt 

xP AD AA 

AR5-s(xA)     0 x-4 + u, (37) 

where A in Eq.(12) is separated into AA and AD, and AR"~* (x.A) is rear- 
ranged version of RB^"S (Eq.(6)) in corresponding order and dimension. 

If we set upper and lower limits of <j> and 9, then we can get bounds of 
those terms in A^B^S{H.

A
). The operational limits of attitude variables are 

set to 
-30° <cf>< 30°,    -40° < 6 < 20°. (38) 
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The corresponding bounds of terms in AR"^ (x.A) are 

-0.4195 < sin 0 tan 9 = p1 < 0.4195 

-0.8391 < cos<£tan0=p2 < 0.3640 

0.8660 < cos ^        =P3<1 

-0.5 <-sin^     = p4<0.5 

-0.6527 < sin cp sec 6 = p5 < 0.6527 

0.8660 < cos ^ sec 0= p6 < 1.3054 

Now we are ready to convert the system matrix in Eq.(37) into an affine 
parameter varying matrix [10] such that 

A(p(t))=Ap
0 + J2Pi(t)Al (39) 

where A? is a constant matrix that has only one 1 on the corresponding 
entry, and zeros otherwise. AQ is the matrix that has constant terms in the 
system matrix of Eq.(37). Finally, the above parameter varying matrix can 
be represented by a polytopic model 

A(t)eCo{Al,Al...,AU, (40) 

where the set Co{-} denotes the set that includes all possible convex combi- 
nation of its vertex elements. The conversion from Eq.(39) to Eq.(40) can 
be done by the function äff2pol in LMI Toolbox [10], and it results in a 
polytopic model with 64 vertices. 

For a given weighting matrices (only for internal states, heading, and 
attitude variables extracted from Eq.(29)), the minimum upper bound of 
the value function is the optimal value of the following convex optimization 
problem [18]: 

mintr(Z) (41) 

Y>0 

YAf + AVY-BX-XTBT   YQ1/2   XTB}^ 
Qll2Y 
RV*X 

-I 
0 

0 
-7 

Z    I 
I   Y 

<0 

>0 

(42) 

Yr = Y, Z1 = Z, 
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Mater ti na 

Figure 9: Magnitudes of elements in matrix P 

where Z is a slack variable, Y = P-1, and X = KY are the change of vari- 
ables. From this result, the terminal cost (for the system without external 
time-dependent signals) is defined by W(x) = x7 Px. 

Due to the size of the given cruise dynamics, the dimension of the 
above convex optimization problem is prohibitively huge. The problem has 
2(nx)2 - (nz - l)(nx - 2) + n1 n' (292 in our case) variables and 64+1+1 
LMI constraints whose dimensions are (2nx + 7iu)2, (2;ix)2, und (n1)2, re- 
spectively. Most of contemporary personal computers are based on a 32 
bit structure, and their maximum allowable memory block size is limited 
to four giga bytes, which is marginal for our problem. Using LMITOOL 
[11] and SeDuMi [35], we tried to solve the full-scale problem, but a solu- 
tion was not complete even after 96 hours. Instead, we sampled 32 vertices 
from 64 vertices in the definition of the polytopic system, and used them 
for CLF computation. In this case, the solver converges after 15 horns. The 
magnitudes of elements in the obtained matrix are shown in Figure 9. 

For the given CLF V^(x), it. is known that there exist r e R+ such that 

rmn(K/(x) + xrQx + urflu) < 0    for x € nr, (43) 

where ftr = {x G RnD+nA\V^(x) < r}, and no and HA are dimensions of 
xD and xA, respectively. 

Let x"(t;x) be the optimal trajectory at t £ [r,T + L] starting from 
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0(0) (degree) 0(0) (degree) 

IC1 20 30 
IC2 20 -30 
IC3 -40 30 
IC4 -40 -30 

Table 2:  Initial conditions used for single helicopter simulations with the 
designed MPC controller 

x = X(T). If x*(r + L;x) e Qr, then then the trajectory starting from x 
converges to the origin under the RHC scheme [17]. 

To complete the design procedure, we need to choose a proper horizon 
length L so that we can have a sufficiently large invariant set that includes 
Qr. However, in high-dimensional systems, it is very difficult to compute 
an invariant set corresponding to an L analytically or numerically [17]. In 
our research, we set L = 0.5 (sec) based on several simulation results with 
various values of L. The sampling frequency is set to 50Hz (8 = 0.02 sec) 
so that it is identical with that of our existing UÄV control system. 

In order to show the validity of the CLF computed from the sub-sampled 
polytopic set, computer simulations are performed with several initial con- 
ditions. As shown in Figure 10 - 12, the designed MPC scheme successfully 
stabilizes all the initial conditions in Table 2. 

It is noticeable that all the states converge to the origin in spite of control 
input saturations in the beginning of simulations (Figure 13). Even though 
the design procedures we use here are originally for unconstrained MPC [17], 
the controller works well with input constraints in our case. 

3.4    Interagent Information Structure and Communication 

Provided that the inter-agent communication happens only one time per 
sampling instance,5 a decentralized algorithm can be implemented with 
lower bandwidth communication channels, while a centralized setup requires 
high bandwidth communication channel on the central agent which solves 
the optimal control problem for every agent. However, in a decentralized 
setup, if inter-agent communications are required during a numerical iter- 
ation, the total amount of information transferred between agents can be 
more than that of a centralized case [27]. This scheme falls into a category 

"This means that there is no communication while solving a local optimization problem. 
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1000 1200 

Figure 14: Values of , ICl: blue solid, IC2: blue dashed. IC3: red dash- 
dotted, IC4: red dotted 

of algorithms using cooperative iteration [4]. Since this cooperative itera- 
tion needs stable and high bandwidth communication channels and strict 
synchronization between agents, it is more challenging to implement one 
on a hard real-time system. In the proposed setup, we use one inter-agent 
communication per every sampling instance, and there is no communication 
while solving an FHOC problem. 

As shown in (29), the proposed MPC scheme requires the predicted 
trajectory of neighbors for t G [T,T + L] at every sampling time. In [7], 
neighboring agents interchange their predicted trajectories and use them 
as estimations of neighbors' trajectories. This appears to he a reasonable 
choice, but it requires higher communication bandwidth than the scheme 
that uses only current neighbors' stntes and extrapolates them for prediction. 
Moreover, few research is done about the cases that these predictions are not 
accurate due to external disturbances. The interageut information structure 
is one of the most controversial subjects in distributed model predictive 
research, e.g. [7, 19]. 

In our research, the transferred spatial positions of neighboring agents 
are extrapolated over the finite horizon. The predicted positions of neigh- 
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boring vehicles are represented by 

xHi(T + t) =x£i(r)+x£i(r)i   for 0 < t < L. (44) 

As shown in the following section, acceptable performance can be achieved 
by this scheme. However, since the prediction error increases as the predic- 
tion horizon extends, the extension of the length of prediction horizon does 
not mean the enlargement of domain of attraction. In addition, the velocity 
information transferred to neighbors should be properly filtered so that the 
effects of noisy measurements can be minimized. 

3.5    Simulations 

The MPC algorithm for autonomous helicopter formations as formulated 
and described above was implemented in Matlab/Simulink environment. 
The core of the implementation involves a solution to the FHOC problem, 
and the following section is devoted to a discussion of numerical algorithms 
for FHOC problems. 

3.5.1    Numerical Solver for Finite-Horizon Optimal Control Prob- 
lem 

In general, the nonlinear FHOC problem, a single player differential game 
from the viewpoint of the game theory, can be numerically solved in two 
ways: indirect and direct approaches. Indirect approaches utilize the neces- 
sary conditions given by the Pontryagin Minimum Principle. Then, it can 
be viewed as a multi-point boundary value problem, and an optimal solution 
is obtained by boundary value problem solvers like shooting methods and 
finite-element methods. However, these indirect methods are known to be 
very sensitive to their initial conditions, and as a result, lack robustness. 
See [28] and references therein. Therefore, it is not practical to use indirect 
methods in solving online optimization problems. 

Direct methods, on the other hand, discretize continuous dynamics and 
cost functions using a high-order Runge-Kutta method [9, 28] or direct collo- 
cation [37], convert it into a finite-dimensional nonlinear optimization prob- 
lem, and obtain an optimal solution through nonlinear programming tech- 
niques. These provide approximate solutions, but they are robust against 
arbitrary initial conditions, and optimal solutions with reasonable accu- 
racy can be achieved using less intensive numerical procedures than indirect 
methods. 
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® 
Figure 15: Right echelon formation with eight helicopters used in simulations 

In the following simulations, we use the DynOpt package [9]. This 
package uses the 4th order Runge-Kutta method for discretization of the 
continuous-time dynamics and cost functions, and achieves an optimal so- 
lution using the sequential unconstrained minimization technique (SUMT). 
Since the package contains the SUMT algorithm and it is tightly integrated 
with discretization procedures, DynOpt allows for compact and versatile 
implementation. Although other solvers using direct method like NTG [24] 
and DIRCOL [37) require an external commercial nonlinear programming 
solver, it is worthwhile to use them in that they provide more user-friendly 
options and detailed error messages for debugging. In the case of NTG, it 
was reported that the package is used as an MPC engine in a hard real-time 
application [7]. 

3.5.2    Simulation Setup 

Figure 15 shows the configuration of the right echelon formation [15] used 
in simulations. We chose this configuration because we want to investigate 
the propagation of disturbances tlirough connected vehicles. 

As shown in (29), the proposed MPC scheme requires the predicted 
trajectories of neighbors for t € [r, r + L] at even.' sampling time.  In our 
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work, we adopt the scheme that interchanges the current position and veloc- 
ity vectors of neighbors and extrapolates them over the prediction horizon. 
Although this information structure may prohibit us from using a long pre- 
diction horizon, since the prediction error may grow over prediction horizon, 
it allows us to minimize the interagent communication burden. 

In the case of the constant gap strategy, gap vectors are defined as 

F H.i-l — 

30" '-30 
-30 F      — 30 
30 -30 

(45) 

and all units are in ft. Note that, even in the case using the varying gap 
strategy, vehicles in far edges, vehicle 0 and vehicle 7 in our configuration 
(Figure 15), using the constant gap strategy using the above constant rela- 
tive gap vectors. 

When we defined the FHOC problem (Eq.(25)), we assumed that there 
are constraints on states such that Xj 6 Xi. In recent publications [12, 13], 
it is reported that the state-constrained MPC scheme is possibly not robust 
due to the discontinuity in the value function induced by state constraints. 
In accordance with this observation, we use only input constraints in our 
application, even though our FHOC problem solver allows state constraints 
in the formulation. We use the following admissible input set for all vehicles 
in our simulations 

Ik = {u e R"? | - 1 < v? < 1, 1 < j < nf}, (46) 

where uJ denotes the j-th element of the vector u. 
A final consideration here is the weighting on the attitude states, <j> and 

6 (roll and pitch angles). It is well known in the field of aircraft control that 
the stabilization of attitude dynamics is a key to good controller design. This 
is due to the coupling between the translational dynamics and the attitude 
dynamics. In order to keep the attitude variation at a minimum, the terms 
related with 4> and 0 in (34) should be more heavily penalized than other 
terms. 

3.5.3    Comparison Between Constant and Varying Gap Strategies 

In order to compare disturbance attenuation performances of two types of 
gap error strategies, we exert negative longitudinal wind gust on the leading 
vehicle 0. The longitudinal acceleration induced by the wind gust is shown 
in Figure 16. 
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Figure 17 shows comparisons of the relative gap responses between the 
constant and the varying gap strategies. As shown here, the MPC algorithm 
successfully damps out the relative gap errors caused by the disturbance as 
they propagate into the formation irrespective of the gap error strategy 
type. This set of figures also illustrates an interesting feature of the varying 
gap strategy. When the varying gap strategy is used, the relative gap error 
between the Vehicle 0 and Vehicle 1 is lager than that of the constant gap 
strategy as shown in Figure 17(a). This is due to the nature of the varying 
gap strategy. When the Vehicle 0 approaches Vehicle 1, then Vehicle 1 
can reduce the size of the gap error penalty very rapidly by moving toward 
Vehicle 2. In addition, the effects of reducing gap error penalty by the 
evasive motion of the Vehicle 2 is amplified through the structure of the 
varying gap strategy. Therefore, the relative gap between Vehicle 0 and 
Vehicle 1 can remain larger than in the constant gap strategy case. In 
other words, the varying gap strategy achieves more 'cooperation' from the 
neighboring vehicle(s) in terms of reducing the gap error penalty. Although 
the varying gap strategy shows poor performance in terms of the gap error 
between Vehicle 0 and Vehicle 1, Figure 18 shows that, in comparison with 
the constant gap strategy, the varying gap strategy can reduce the maximum 
velocity fluctuation of Vehicle 1, which is directly related to the passenger 
comfort. Also, the varying gap strategy shows superior performance from 
the point of view of the disturbance attenuation as the wind gust induced 
disturbance propagates tiirough the formation (Figure 17(b) - Figure 17(f)). 

The large gap error of the leader vehicle can be remedied by increasing 
the size of penalties on tracking errors. This is natural, since it is very 
important for a leader vehicle to maintain its velocity and heading, and the 
performance of the entire formation can depend on the tracking quality of 
the leader vehicle. For this reason, an active disturbance rejection scheme 
should be considered for vehicles at formation edges. 

3.5.4    Performance with Heterogeneous Formations 

In order to test our algorithm in a heterogeneous setup, we put virtual mod- 
els from Section 2 in locations of 1, 2, 4, 5, and 6 in the right echelon for- 
mation (Figure 15). For Vehicles 0, 3, and 7, the original R-50 cruise model 
is used. The varying gap strategy is utilized in the following simulation. 

As shown in Figure 19, the proposed algorithm successfully damps out 
external disturbance as it propagates through the formation. 

In the case of mesh stability algorithm [30], the gap error induced by 
the leader motion is amplified between a normal vehicle and a more agile 
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Figure 16: Disturbance induced by wind gust, negative x direction 

veiiicle. Since the algorithm uses position information of the leader as well 
as neighboring vehicles, and an agile vehicle tends to maintain the relative 
position from the leader even when the relative gap errors between neighbors 
become large, there exists a 'jump' in gap error propagation. However, in 
our MPC-based formulation, since vehicles share only reference velocities 
and heading, the dilemma of the global connection to the leader does not 
appear, and the space between vehicles can be safely maintained. 

Figure 20 shows comparisons of gaps between homogeneous and het- 
erogeneous formations. It is noticeable that the proposed algorithm shows 
comparable disturbance attenuation capability in heterogeneous formation. 

3.6    Discussion 

The current problem of the proposed scheme is that the FHOC problem 
solver. DynOpt, is too slow for real-time applications. It takes about an hour 
to perform a 8-vchicle formation simulation for 80 seconds. Our algorithm 
will be tested with different solvers such as the gradient descent method 
[36]. We are optimistic because we already have performed successful MPC 
experiments using the gradient decent method [31]. The enhancement of 
the performance of our existing solver (using gradient decent method) is 
also now being pursued. 
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(a) Gap between Vehicle 0 and 1 (b) Gap between Vehicle 1 and 2 

(c) Gap between Vehicle 2 and 3 (d) Gap between Vehicle 3 and 4 
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(e) Gap between Vehicle 4 and 5 (f) Gap between Vehicle 5 and 6 

Figure 17: Comparison of gaps in x-direction, constant gap strategy: dashed 
lines, varying gap strategy: solid lines 
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Figure 18: Forward velocity of the Veliicle 1 under the constant gap strategy 
(dotted), and the varying gap strategy (solid) 

4    Hardware-In-the-Loop Simulation (HILS) Sys- 
tem for BEAR Fleet 

Hardware-in-the-Loop Simulator (HILS) allows embedded real-time modules 
to be tested in a simulated environment in closed-loop. The necessity of 
HILS system is emphasized especially in developing a complex system that 
requires high cost physical experiments. For example, the development of 
automotive control systems is also a well-known application area of HILS 
due to its difficulties on real car experiments [14]. 

Since the UAV system is extremely complicated, expensive, and safety- 
critical, it is natural to introduce a HILS system in its development cycle. In 
general, UAV experiments involve high risks, and a single typo in a huge code 
set can cause complete destruction of the system and/or injuries of ground 
staffs. Considering the risks involved in multi-UAV/UGV experiments like 
a formation flight, the entire development cycle may be severely delayed 
without sufficient testing on a HILS system. 

The first version of the HTLS system for BEAR fleet was implemented 
on real-time operating system (RTOS) VxWorks.  In this version, a flight 
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(a) Gap between vehicle 0 and 1 (b) Gap between vehicle 1 and 2 
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Figure 21: HILS system structure 

controller for Yamaha UMAX was implemented using the time-based pro- 
gramming language, Giotto [16], and the effectiveness of Giotto was tested 
with the HILS system. However, since the actual control software for the 
RMAX was not available until 2004, only a simplified version of a controller 
was implemented. As a result, the VxWorks-based HILS system is not di- 
rectly applicable to the control software running on our flight platforms. 
Moreover, it does not include a safety pilot and a ground station/operator 
in the loop. 

Recently, in parallel with the development of the Ursa Maxima series 
based on Yamaha RMAX industrial helicopters, we developed a HILS system 
compatible with the existing navigation software in the BErkeley AeRobot 
(BEAR) program. In the following sections, we review the implementation 
of new version of our HILS system. 

4.1    Hardware Structure 

The hardware structure of HILS may vary depending on each systems's char- 
acteristics. In the case of development of a missile seeker system, the sensor 
systems are designed for a specific type of missile and the hardware struc- 
ture is also a part of development. Hence the whole integrated flight system 
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System Message Description Frequency (Hz) 

GPS 
PRTK computed position, RTK 5 
PXY Cartesian coordinate position 1 

INS 
M3 sensor status and navigation data 1 

M3512 delta velocity and delta attitude data 100 

RMAX 
RX RMAX receiver data 40 

YACS RMAX system status data 10 

Table 3: INS, GPS, and RMAX messages used in BEAR avionics 

including navigation sensors and processors should be tested in a simulated 
harsh environment. However, in the case of our UAV system, since it is made 
up of custom sensors and parts, and the hardware structure is not changed 
frequently, the test of entire avionics is not required. Rather, as a testbed 
of various complex scenarios, BEAR UAV systems may undergo a series of 
modifications in its software structure. Thus the most important feature to 
be included in the HILS system for the BEAR fleet is the verification ability 
of real-time software installed on the vehicles. Also, it is desirable to create 
a simulated situation as close to the real experiment as possible. In these 
contexts, we include a safety pilot in the loop as well as major navigation 
sensors like GPS and INS (Figure 21). 

Pilot commands and RMAX vehicle status are relayed by Yamaha Atti- 
tude Control System (YACS) via serial ports. The HILS computer running 
on QNX4 generates various sensor outputs based on simulated helicopter dy- 
namics and kinematics. The hardware components simulated in the HILS 
system are CMIGITS-II INS by Systran Donner and OEM3 GPS card by 
Novatel. Note that, as shown in Figure 21, our HILS system includes the 
vehicle, the safety pilot and ground station/operator so that it can create a 
situation that may happen in a real experiment. 

4.2    Software Structure 

The HILS system must provide all the INS/GPS and YACS messages used 
by the flight control system (FCS). Table 3 shows core messages required by 
FCS. Although the FCS software uses time-based and event-driven schedul- 
ing, these messages are purely time-based. Especially, the timing of the 
M3512 message should be kept precisely, since the basic scheduling of BEAR 
FCS software is depending on the arrival timing of this message. The soft- 
ware timers provided by RTOS QNX4 kernel are used for these timings, and 
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Figure 22: RS-232 pulse trains on INS M3512 chaiuiel 

the timing performance of M3512 is measured by an oscilloscope. Figure 22 
shows the measured RS-232 pulse trains of M3512. The average period be- 
tween these pulse trains is approximately 10.24 ms (97.7 Hz) and timing 
jitter is less than 0.05 ms, which are small enough for our application. 
The entire software structure of the HILS system is shown in Figure 23. 
The HILS system consists of five processes: server, ins.gps. rmax-io, and 
simulator, server, which is not shown in the figure for simplicity, is the 
parent process of all other processes, and creates shared memories. This will 
be used as a gateway between the HILS control station and the HILS system 
in future development. The core computation parts of the above processes 
are ported from VxVVorks version [16] to QNX4. Timing and shared memory 
structures are newly designed. 

Process names are self-explanatory, simulator integrates helicopter dy- 
namics and kinematics using Rungc-Kutta 4-th order formula, and updates 
the shared memory shm sim-data at 100 Hz. The process gps creates pxy 
and prtk messages based on simulation results and several coordinate con- 
versions.6 Likewise, ins creates M3512 and M3 messages using simulation 

''For prtk message, we need a transformation from Cartesian coordinate to geodetic 
(Longitude-Latitude-Hcight, LLH) coordinate. Also. LLH coordinate to Earth-Centered- 
Earth-Fixed (ECEF) coordinate conversion is needed for calculation of local Cartesian 
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Figure 23: HILS system software structure 

results and GPS conversion results, rmax.io deals with communications be- 
tween the HILS system and YACS/FCS. In order to prevent simultaneous 
read/write access on a same shared memory, a mutually exclusive memory 
access structure is implemented using a memory access register in shared 
memory. 

For more realistic sensor simulations, it is necessary to add proper mea- 
surement noises to the solutions from simulator. Based on |2] and data 
from experiments, properly scaled Gaussian noises are added to INS solu- 
tions. For GPS solutions, normally distributed uncorrelated random noises, 
whose standard deviation is equals to 0.02/3 (in meter scale) [25], are added 
to the solution. 

4.3    Simulation Results 

As an example of HILS system application, a waypoint navigation using 
Vehicle Control Language (VCL) [33] in batch mode is performed on the 
proposed HILS system. Figure 24 and Figure 25 show vehicle states during 

origin. 
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Figure 24: HILS simulation results during a waypoint navigation 

the simulation and the vehicle trajectory in two-dimensional plane, respec- 
tively. 

5    Conclusions and Future Work 

In tlüs ARO STIR W911NF-04-1-0448, the problem of autonomous heli- 
copter formations is considered. A stable MPC-hasod controller for a single 
helicopter was implemented first, and then carefully designed inter-vehicle 
coupling terms were added in order to maintain safe space between heli- 
copters. In Chapter 3, we showed the proposed algorithm successfully damps 
out exogenous disturbances via a series of simulations. The algorithm was 
also applied to a heterogeneous formation, and it showed a good attenuation 
property. 

The simulations of the MPC-based formation flight scheme proposed 
throughout this report show that the algorithm involves more active and 
dynamic scenarios than the case of mesh stability [30]. It means that the 
experimental verification of the algorithm will be more challenging, and more 
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dangerous. In order to minimize the possibility of an unfortunate accident, 
newly implemented softwares should be strictly verified before the actual 
experiment, and all the experiments should be carefully designed considering 
the safety of ground crew. Our HILS system will play very important role 
in future development and experiments. 

As the continuing effort of this project, we are now developing the con- 
cept of "formation manager" which is the high-level agent of the MPC con- 
troller enabling more dynamic and flexible autonomous formation nights. 
Also, the developed algorithms are now being implemented on real-time 
hardware and will be tested under HILS environment before the real-world 
experiments. All this work is currently supported by Phase I of the ARO 
STTR A05-T011 which ends in February 2006. 
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